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CS6640 Computational Photography

6. Color science for digital photography
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What visible light is
• One octave of the electromagnetic spectrum (380-760nm)
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What color is
• Colors are the sensations that arise from light energy with 

different wavelength distributions

• Color is a phenomenon of human perception; it is not a 
universal property of light

• Roughly speaking, things appear “colored” when they depend 
on wavelength and “gray” when they do not.
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• Salient property is the spectral power distribution (SPD)
the amount of light present at each wavelength
units: Watts per nanometer (tells you how much power you’ll find in a 
narrow range of wavelengths)
for color, often use “relative units” 
when overall intensity is not important

Measuring light

wavelength
band 
(width dλ)

amount of light = 180 dλ 
(relative units)

wavelength (nm)
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The problem of color science
• Build a model for human color perception

• That is, map a physical light description to a 
perceptual color sensation

?
Physical Perceptual

[S
to

ne
 2

00
3]

5



Cornell CS6640 Fall 2012

The eye as a measurement device
• We can model the low-level

behavior of the eye by thinking
of it as a light-measuring machine

its optics are much like a camera
its detection mechanism is also
much like a camera

• Light is measured by the 
photoreceptors in the retina

they respond to visible light
different types respond to different 
wavelengths
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A simple light detector
• Produces a scalar value (a number) when photons land on it

this value depends strictly on the number of photons detected
each photon has a probability of being detected that depends on the 
wavelength
there is no way to tell the difference between signals caused by light 
of different wavelengths: there is just a number

• This model works for many detectors:
based on semiconductors (such as in a digital camera)
based on visual photopigments (such as in human eyes)
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A simple light detector

8



Cornell CS6640 Fall 2012

Light detection math
• Same math carries over to power distributions

spectum entering the detector has its spectral power distribution 
(SPD), s(λ)
detector has its spectral sensitivity or spectral response, r(λ)

measured signal

input spectrum

detector’s sensitivity
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Light detection math

• If we think of s and r as vectors, this operation is a dot product 
(aka inner product)

in fact, the computation is done exactly this way, using sampled 
representations of the spectra.

let λi be regularly spaced sample points Δλ apart; then:

this sum is very clearly a dot product

or
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Cone Responses

• S,M,L cones have 
broadband spectral 
sensitivity

• S,M,L neural response is 
integrated w.r.t. λ 

we’ll call the response functions 
rS, rM, rL

• Results in a trichromatic 
visual system

• S, M, and L are 
tristimulus values [s
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Cone responses to a spectrum s
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Colorimetry: an answer to the problem
• Wanted to map a physical light description to a 

perceptual color sensation

• Basic solution was known and standardized by 1930
Though not quite in this form—more on that in a bit

Physical Perceptual
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Basic fact of colorimetry
• Take a spectrum (which is a function)

• Eye produces three numbers

• This throws away a lot of information!
Quite possible to have two different spectra that have the same S, M, 
L tristimulus values
Two such spectra are metamers
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Pseudo-geometric interpretation
• A dot product is a projection

• We are projecting a high dimensional vector (a spectrum) onto 
three vectors

differences that are perpendicular to all 3 vectors are not detectable

• For intuition, we can imagine a 3D analog
3D stands in for high-D vectors
2D stands in for 3D
Then vision is just projection onto a plane
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Pseudo-geometric interpretation
• The information available to the visual system about a spectrum 

is three values
this amounts to a
loss of information
analogous to
projection on a plane

• Two spectra that
produce the same
response are
metamers
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Basic colorimetric concepts
• Luminance

the overall magnitude of the the visual response to a spectrum 
(independent of its color)

corresponds to the everyday concept “brightness”

determined by product of SPD with the luminous efficiency function 
Vλ that describes the eye’s overall ability to detect light at each 
wavelength
e.g. lamps are optimized
to improve their luminous
efficiency (tungsten vs. 
fluorescent vs. sodium vapor)
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Luminance, mathematically
• Y just has another response curve (like S, M, and L)

– rY is really called “Vλ”

• Vλ is a linear combination of S, M, and L

Has to be, since it’s derived from cone outputs
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More basic colorimetric concepts
• Chromaticity

what’s left after luminance is factored out (the color without regard for 
overall brightness)
scaling a spectrum up or down leaves chromaticity alone

• Dominant wavelength
many colors can be matched by white plus a spectral color
correlates to everyday concept “hue”

• Purity
ratio of pure color to white in matching mixture
correlates to everyday concept “colorfulness” or “saturation”
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Color reproduction
• Have a spectrum s; want to match on RGB monitor

“match” means it looks the same
any spectrum that projects to the same point in the visual color 
space is a good reproduction

• Must find a spectrum that the monitor can produce that is a 
metamer of s

R, G, B?
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Additive Color
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LCD display primaries

22

Curves determined by (fluorescent or LED) backlight and filters
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Spatial integration
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Color reproduction
• Say we have a spectrum s we want to match on an RGB monitor

“match” means it looks the same
any spectrum that projects to the same point in the visual color 
space is a good reproduction

• So, we want to find a spectrum that the monitor can produce 
that matches s

that is, we want to display a metamer of s on the screen
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Color reproduction
• We want to compute

the combination of
R, G, B that will project
to the same visual
response as s.
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Color reproduction as linear algebra
• The projection onto the three response functions can be written 

in matrix form:
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Color reproduction as linear algebra
• The spectrum that is produced by the monitor for the color 

signals R, G, and B is:

• Again the discrete form can be written as a matrix:
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Color reproduction as linear algebra
• What color do we see when we look at the display?

Feed C to display
Display produces sa

Eye looks at sa and produces V

28



Cornell CS6640 Fall 2012

• Goal of reproduction: visual response to s and sa is the same:

• Substituting in the expression for sa,

Color reproduction as linear algebra

color matching matrix for RGB

29
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Recap
• We now know how to match any color from the real world 

on a display

• We don’t need to know the whole spectrum, only the projections 
onto S, M, and L response functions

• There is then a simple linear procedure to work out the 
combination of any 3 primaries to match the color
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Reflection from colored surface
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Color constancy

32
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Color constancy
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Chromatic adaptation
• Objects have different spectra under different illuminants

…but your brain has no problem recognizing them anyway

• The human visual system automatically detects the illuminant 
color and adjusts for it

so the same object (usually) looks (roughly) the same color under a 
wide range of illumination conditions
this happens at a low level so you don’t even notice

• But color constancy is not perfect
…and indeed can’t be, with just 3 color receptors
examples: sweater looks nice with pants in your closet, then looks 
different once you get out in the daylight
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Color spaces
• Need three numbers to specify a color

but what three numbers?
a color space is an answer to this question

• Stored numbers often map nonlinearly to intensity of primary
enables nonuniform quantization (smaller quantization steps in dark)
common scheme is R = (nR/255)ɣ

• Common example: monitor RGB
define colors by what R, G, B signals will produce them on your 
monitor

(in math, s = RR + GG + BB for some spectra R, G, B)

device dependent (depends on gamma, phosphors, gains, …)
if I choose RGB by looking at my monitor and send it to you, you may not see the same color

also leaves out some colors (limited gamut), e.g. vivid yellow
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Standard color spaces
• Standardized RGB (sRGB)

makes a particular monitor RGB standard
standard quantization curve is almost gamma = 2.2
other color devices simulate that monitor by calibration
sRGB is usable as an interchange space; widely adopted today
gamut is still limited

• Other RGB spaces
Adobe RGB (more saturated primaries than sRGB—wider gamut)
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A universal color space: XYZ
• Standardized by CIE (Commission Internationale de l’Eclairage, 

the standards organization for color science)

• Based on three “imaginary” primaries X, Y, and Z
(in math, s = XX + YY + ZZ)

imaginary = only realizable by spectra that are negative at some 
wavelengths
any stimulus can be matched with 
positive X, Y, and Z
separates out luminance: X, Z have 
zero luminance, so Y tells you the 
luminance by itself

36
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Separating luminance, chromaticity
• Luminance: Y

• Chromaticity: x, y, z, defined as

since x + y + z = 1, we only need to record two of the three
usually choose x and y, leading to (x, y, Y) coords
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Chromaticity Diagram
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spectral locus

purple line
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Chromaticity Diagram
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Color Gamuts
[s

ou
rc

e 
un

kn
ow

n]

40

• Monitors/printers can’t 
produce all visible colors

• Reproduction is limited to 
a particular domain

• For additive color (e.g. 
monitor) gamut is the 
triangle defined by the 
chromaticities of the 
three primaries.
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RGB limitations
• http://dba.med.sc.edu/price/irf/Adobe_tg/manage/
images/gamuts.jpg
• http://www.petrvodnakphotography.com/Articles/
ColorSpace.htm

http://dba.med.sc.edu/price/irf/Adobe_tg/manage/images/gamuts.jpg
http://dba.med.sc.edu/price/irf/Adobe_tg/manage/images/gamuts.jpg
http://dba.med.sc.edu/price/irf/Adobe_tg/manage/images/gamuts.jpg
http://dba.med.sc.edu/price/irf/Adobe_tg/manage/images/gamuts.jpg
http://dba.med.sc.edu/price/irf/Adobe_tg/manage/images/gamuts.jpg
http://dba.med.sc.edu/price/irf/Adobe_tg/manage/images/gamuts.jpg
http://dba.med.sc.edu/price/irf/Adobe_tg/manage/images/gamuts.jpg
http://dba.med.sc.edu/price/irf/Adobe_tg/manage/images/gamuts.jpg
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Color sensing
• Sensor is like eye

gives you projection onto a 3D (or >3D) space
but it is the wrong space!

• Problems with measured data
we have RGB, but not the right RGB
projection onto sensitivities, not coefficients for primaries (always)
projection onto wrong space (always in practice)
results depend strongly on illuminant (help!)
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Sensor color properties
• Like eye, key property is the spectral sensitivity curves
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Figure 6: Color Filter Array Pattern 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

400 500 600 700 800 900 1000

A
bs

ol
ut

e 
Q

ua
nt

um
 E

ff
ic

ie
nc

y 

Wavelength (nm) 

Red Green

 
With clear 
cover glass 

In a real camera,
there will be a filter
to block infrared



Cornell CS6640 Fall 2012

Camera color problem

44

span of
eye’s spectral
response
functions

spectrum s 

• Given camera response, 
determine corresponding visual response

• This guess has to
involve assumptions
about which
reflectance spectra
are more likely

• Mathematical approach:
assume spectra in 
fixed subspace

• Or, more often, just
derive a transformation
empirically
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Camera color rendering via subspace
• Assume spectrum s is a combination of three spectra

• Work out what combination it is

same math as additive color matching

• Project that combination onto visual response

45
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Camera color rendering via subspace
• Assume spectrum s is a combination of three spectra

• Work out what combination it is

same math as additive color matching

• Project that combination onto visual response
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Empirical color transformation
• Baseline method: use 

Macbeth Color Checker
a set of square patches of known color
(these days you buy the MCC from X-Rite)

• Procedure
1. Photograph the color checker under uniform illumination
2. Measure the camera-RGB values of the 24 squares
3. Look up the XYZ colors of the 24 squares
4. Use linear least squares to find a 3x3 matrix that approximately 
maps the camera responses to the correct answers

46

min
M

kCmacbeth �MCcamerak
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White balancing
• Problem with previous slide

the camera-RGB colors depend on the illuminant
the matrix M only works for the illuminant that was used to calibrate

• Solutions?
calibrate separately for every illuminant?
correct for illuminant first, then apply matrix!

• Hypothesis of von Kries: eye accounts for illuminant by simply 
scaling the three cone signals separately

some evidence this is a reasonable model for the eye
leads to “von Kries transform”: multiply by a diagonal matrix
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Range of illuminants

48
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White balancing steps

49

1. Determine the camera RGB of the illuminant (up to scale)
professional/studio setting: photograph a gray card
poor man’s version: find something gray in the image
alternative: let user tell the camera (tungsten, daylight, …)
practical solution: Auto White Balance software guesses

2. Divide all the pixel values by the illuminant RGB
undetermined scale factor
maybe fix luminance to 1
maybe scale lowest channel of illuminant to 1

• Now neutral colors are neutral!
this is unbelievably important for getting nice color
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Putting it together: color processing
• Calibrate your color matrix using a

carefully white-balanced image
when solving for M, constrain to ensure rows sum to 1
(then M will leave neutral colors exactly alone)

• For each photograph:
1. determine illuminant
2. apply von Kries
3. apply color matrix
4. apply any desired nonlinearity
5. display the image!
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raw sensor color
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white balanced raw sensor color
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white balanced and matrixed to sRGB


